Magenta Ain’t a Color


Liz Elliott of says “magenta ain’t a color.”

When our eyes see colours, they are actually detecting the different wavelengths of the light hitting the retina. Colours are distinguished by their wavelengths, and the brain processes this information and produces a visual display that we experience as colour.

This means that colours only really exist within the brain – light is indeed travelling from objects to our eyes, and each object may well be transmitting/reflecting a different set of wavelengths of light; but what essentially defines a ‘colour’ as opposed to a ‘wavelength’ is created within the brain.

If the eye receives light of more than one wavelength, the colour generated in the brain is formed from the sum of the input responses on the retina. For example, if red light and green light enter the eye at the same time, the resulting colour produced in the brain is yellow, the colour halfway between red and green in the spectrum.

So what does the brain do when our eyes detect wavelengths from both ends of the light spectrum at once (i.e. red and violet light)? Generally speaking, it has two options for interpreting the input data:

a) Sum the input responses to produce a colour halfway between red and violet in the spectrum (which would in this case produce green – not a very representative colour of a red and violet mix)
b) Invent a new colour halfway between red and violet

Magenta is the evidence that the brain takes option b – it has apparently constructed a colour to bridge the gap between red and violet, because such a colour does not exist in the light spectrum. Magenta has no wavelength attributed to it, unlike all the other spectrum colours.

[via Reddit]

Comments on this entry are closed.